Exercise 90

Suppose that the price per unit in dollars of a cell phone production is modeled by $p=\$ 45-0.0125 x$, where x is in thousands of phones produced, and the revenue represented by thousands of dollars is $R=x \cdot p$. Find the production level that will maximize revenue.

Solution

Substitute the formula for p into the one for R and complete the square to write the quadratic function in vertex form.

$$
\begin{aligned}
R & =x p \\
& =x(45-0.0125 x) \\
& =45 x-0.0125 x^{2} \\
& =-0.0125\left(x^{2}-3600 x\right) \\
& =-0.0125\left[\left(x^{2}-3600 x+1800^{2}\right)-1800^{2}\right] \\
& =-0.0125\left[(x-1800)^{2}-1800^{2}\right] \\
& =-0.0125(x-1800)^{2}+0.0125\left(1800^{2}\right) \\
& =-0.0125(x-1800)^{2}+40500
\end{aligned}
$$

Therefore, the maximum revenue is $R=40500(\$ 40,500,000)$, which occurs when $x=1800$ $(1,800,000$ phones) and $p=45-0.0125(1800)=22.5$.

