Exercise 90

Suppose that the price per unit in dollars of a cell phone production is modeled by p = \$45 - 0.0125x, where x is in thousands of phones produced, and the revenue represented by thousands of dollars is $R = x \cdot p$. Find the production level that will maximize revenue.

Solution

Substitute the formula for p into the one for R and complete the square to write the quadratic function in vertex form.

$$R = xp$$

= $x(45 - 0.0125x)$
= $45x - 0.0125x^2$
= $-0.0125(x^2 - 3600x)$
= $-0.0125[(x^2 - 3600x + 1800^2) - 1800^2]$
= $-0.0125[(x - 1800)^2 - 1800^2]$
= $-0.0125(x - 1800)^2 + 0.0125(1800^2)$
= $-0.0125(x - 1800)^2 + 40500$

Therefore, the maximum revenue is R = 40500 (\$40,500,000), which occurs when x = 1800 (1,800,000 phones) and p = 45 - 0.0125(1800) = 22.5.